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DELTA-SIGMA MODULATION

Delta-sigma modulation utilizes oversampling
and digital filtering to achieve high performance
A/D conversion and filtering at low cost. The ad-
vent of commercial delta-sigma converters is due
in most part to advances in mixed analog-digital
VLSI technology. Precision analog circuitry can
now be integrated on the same chip with power-
ful digital filters.

In a delta-sigma ADC, the same digital filter used
in the A/D conversion process can perform
system-level filtering with performance unachiev-
able in analog form. Delta-sigma converters have
been targeted at applications demanding high-per-
formance filtering (high-end modems, digital
audio, geophysical exploration, etc).

This application note uses the CS5317 voice
band A/D converter for examples. See the end of
this application note for implementation details
for the CS5317, CS5501, CS5335 A/D convert-
ers.

Fundamentals

A delta-sigma ADC consists of two basic blocks:
an analog modulator and a digital filter (see Fig-
ure 1). The fundamental principle behind the
modulator is that of a single-bit A/D converter
embedded in an analog negative feedback loop
with high open loop gain. The modulator loop
oversamples and processes the analog input at a
rate much higher than the bandwidth of interest.
The modulator’s output provides small packages
of information (that is, 1-bit) at a very high rate
and in a format that the digital filter can process

to extract higher resolution (such as 16-bits) at a
lower rate.

The delta-sigma converter’s basic operation can
be analyzed in either the time domain, or (more
conventionally) in the frequency domain.

Time-Domain Analysis

The basic operation of a delta-sigma modulator
can be understood more intuitively by demonstra-
tion. A simple, first-order modulator (that is, a
conventional voltage-to-frequency converter) is
shown in Figure 2. (Note: a modulator’s order in-
dicates the number of orders of analog filtering -
or integration - in the loop). Full-scale inputs are
± 1V and three nodes are labeled V1, V2, and V3.
The output of the comparator, node V3, is the
output of the loop and is also converted by the
1-bit DAC into plus or minus full-scale (+1V or
-1V).

At the differential amplifier, the +1V or -1V is
subtracted from the analog input voltage. The re-
sult, the voltage at node V1, is input to the
integrator. The integrator acts as an analog accu-
mulator; ie. the input voltage at node V1 is added
to the voltage on node V2 which becomes the
new voltage on node V2. Node V2 is then com-
pared to ground. If it is greater than ground, node
V3 becomes +1V; if it is less than ground, V3
becomes -1V. Each operation occurs once during
each clock cycle.
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Figure 1. Delta-Sigma ADC
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Figure 2. 1st-order Delta-Sigma Modulator
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In the example shown in Table 1, all nodes are
initially set to zero, and the analog input voltage
is assumed to be 0.6V. Since all nodes are identi-
cal in clock cycles two and seven, the period
defined by cycles two to six will repeat if the
analog input remains unchanged. The average
value of modulator outputs (at node V3) during
that period, 0.6, yields a numerical representation
of the analog input.

With conventional voltage-to-frequency convert-
ers a digital counter is used to extract the
information in the VFC’s 1-bit output. Pulses are
counted over a specified period, effectively creat-
ing a digital averaging (or integrating) filter. The
final count represents the average analog input
value during the integrating period.

Advanced delta-sigma converters use higher-order
modulators and more powerful digital filters. The
CS5317, one of the first commercially-available
delta-sigma converters uses a second-order modu-
lator. The pattern of transitions in its 1-bit output
provides more useful information regarding
higher resolution at higher frequencies.

However, a more sophisticated digital filter than a
counter is needed to interpret that information. A
digital FIR filter is basically a rolling, weighted
average of consecutive samples (see the section

on digital filtering). An averaging filter weights
all samples equally. By applying a more sophisti-
cated weighting function to the 1-bit signal, a
digital FIR filter can assemble an N-bit output
(with 2N possible values) without having to wait
for 2N samples.

The Charge-Balance Name

Delta-sigma ADC’s are also known by other
names - sigma delta and charge-balance are two
examples. The Charge-Balance name derives
from the fact that the modulator tries to balance
the analog input with the DAC’s output in the
negative feedback loop. The charge injected onto
the integrator’s capacitor from sampling the ana-
log input (see Figure 2) is therefore balanced by
the charge injected by the DAC’s output. Modula-
tors have been implemented in both
switched-capacitor and continuous-time form.

Frequency-Domain Analysis

Since filtering plays a key role in a delta-sigma
ADC, it is easier to understand the converter’s
operation by analyzing it in the frequency do-
main.

Overview

An A/D converter’s resolution determines its dy-
namic range (or signal-to-noise ratio).
Conversely, one can improve a converter’s signal-
to-noise ratio and thereby increase its
effective resolution. The fundamental concept
behind delta-sigma converters is to perform a
simple, low-resolution A/D conversion and re-
duce the resulting "quantization noise" (without
affecting the frequency band of interest) using
analog and digital filtering.

Quantization Noise

The comparator in the delta-sigma modulator
loop plays the role of a 1-bit A/D converter. Any
A/D converter can represent a continuous analog
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input by one of only a finite number of codes,
giving rise to an uncertainty, or quantization er-
ror, of up to ± 1/2 LSB. For a consecutive
sequence of samples in a waveform, these quanti-
zation effects can be modeled as a random noise
source under conditions commonly encountered
in signal processing applications. (These condi-
tions hold true for delta-sigma modulators). The
rms value of the noise source relative to a full-
scale input can be shown to equal - (6.02 N +
1.76) dB, for an N-bit resolution converter. Since
this error "signal" is totally random (or uncorre-
lated with the input) it can be assumed to be
white, with its energy spread uniformly over the
band from dc to one-half the sampling rate.

As a 1-bit ADC, the comparator in a delta-sigma
modulator offers (an almost comical) 7.78 dB
signal-to-noise ratio. However, the input signal is
grossly oversampled (2.5 MHz in the CS5317),
thus spreading the quantization noise over a wide
bandwidth (1.25 MHz). The noise density in the
bandwidth of interest (5 kHz) is therefore re-
duced.

Noise Shaping

Analog filtering is used in the modulator loop to
further reduce noise density in the frequency
band of interest by shaping the quantization noise
spectrum. The spectrum of the input signal,
meanwhile, remains unaltered. Figure 3 shows a
modulator loop with analog and digital circuit
differences ignored. The comparator is simply
shown as a (quantization) noise source, and the
analog filtering, which is simply an integrator, as-
sumes the filter response H(f). If the analog input
equals zero, then

                 Dout = Q(n) - H(f) Dout

                        Dout =
    Q(n)  

                                   
1 + H(f)

 
The quantization noise at the output is reduced
by the open-loop gain of the integrator. At low

frequency, the integrator is designed for high
open-loop gain, so that quantization noise is re-
duced. As shown in Figure 4b, the integrator
effectively pushes the quantization noise out of
the bandwidth of interest and into higher frequen-
cies. Digital lowpass filtering then removes the
quantization noise at the higher frequencies with-
out affecting the low-frequency spectrum of
interest.

The spectral characteristics of the analog loop fil-
tering dictates the delta-sigma converter’s
resolution/bandwidth ratio. Higher-order integra-
tors improve noise shaping and allow for higher
resolutions at wider bandwidths. The CS5317
uses a second-order modulator for superior noise
shaping.

Digital Filtering

The spectral characteristics of the back-end digi-
tal fi l tering also affects the delta-sigma
converter’s resolution/bandwidth ratio. Faster roll-
off and greater stopband rejection reduces
residual quantization noise. The digital filter sec-
tion of this application note offers a detailed
explanation of the theory behind digital filtering.

Anti-Alias Requirements

As shown in Figure 4, the input and digital filter-
ing spectrum of any ADC repeats around integer
multiples of its sampling rate. A delta-sigma
ADC thus does not provide noise rejection in the
region around integer multiples of the sampling
rate (± 5 kHz around 2.5 MHz, 5 MHz,
7.5 MHz...). If noise exists in the system in these
narrow bands, analog filtering is needed to re-
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Figure 3. Analog Modulator Model
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move it at the converter’s input otherwise it will
alias and pass unfiltered to the converter’s output.

Since delta-sigma ADC’s are grossly oversam-
pled, anti-alias filtering requirements are often
trivial. For instance, the CS5317 provides a factor
of 500 of oversampling (2.5 MHz/5 kHz). A sin-
gle-pole, passive RC filter at the CS5317’s input
is therefore sufficient in most applications.

Decimation

Even though the delta-sigma ADC oversamples
and processes analog samples at a frequency well
above the bandwidth of interest, it will generally
offer its high-resolution output at a much-lower
system sampling rate. Any reduction in sampling
rate is termed decimation. The output can be fur-
ther decimated at the system level by selectively
reading a fraction of the available samples (for
instance, every tenth sample). Independent of the
decimation ratio, the converter’s noise perform-
ance (and effective resolut ion) remains
unchanged.

Conversion Accuracy/Performance

Like integrating ADC’s and V/F converters, a
delta-sigma ADC does not contain any source of
nonmonotonicity and thereby offers "theoretically
perfect" DNL with no missing codes. The ADC
in the modulator is simply a comparator, and the
DAC is the positive and negative voltage refer-
ences. No precision ratio matching is needed as
in other medium- or high-speed A/D conversion
techniques such as successive-approximation.
Useful resolution is limited only by residual
quantization noise which, in turn, is determined
by coarse analog and high-performance digital
filtering.

Linearity error is limited only by imperfections in
the input sample/hold. The CS5317 achieves typi-
cal nonlinearity of just ± 0.003 % through the use
of high-quality on-chip silicon dioxide capacitors
with low capacitor voltage coefficient.
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DIGITAL FILTERING 

A conventional analog filter implements a mathe-
matical equation using reactive components
(capacitors and inductors). A digital filter can im-
plement the same filter equation using two
fundamental arithmetic operations: multiplication
and addition (or accumulation). A digital filter
considers a consecutive sequence of digitized
samples a "waveform." It analyzes the relation-
ship between samples, processes the data, and
outputs an adjusted waveform. 

Digital filters offer ideal stability, repeatability,
and potentially perfect performance (linear phase,
etc.). Digital filters also remain impervious to en-
vironmental conditions, thus providing superior
reliability over time and temperature. The major
difference compared to analog filters, though, is
that digital filters operate on a signal in sampled
form.

Sampled-Data Theory

A fundamental phenomenon in sampled-data sys-
tems is an effect called "aliasing." Basically, once
an analog signal is sampled, its frequency com-

ponents are no longer uniquely distinguishable.
Figure 5a shows a special case called "dc alias-
ing." If a signal is sampled precisely at its
fundamental frequency, it will always be sampled
at the same point on the waveform. It thus be-
comes indistinguishable from a dc input.
Likewise, a signal at twice the sampling fre-
quency (or any integer multiple of fs) would
appear as dc as well. Figure 5b illustrates a more
general case of aliasing. Again, two signals at dif-
ferent frequencies become indistinguishable once
sampled. 

The effect of aliasing in the frequency domain is
illustrated in Figure 6. The baseband spectrum
(dc to one-half the sampling rate) also "appears"
around integer multiples of the sampling rate,
and vice-versa. In signal processing applications,
anti-alias filtering is used to bandlimit the analog
signal before it is sampled. This removes out-of-
band components which could be mistaken for
important information in the band of interest.

Aliasing is critical in digital filtering. A digital filter
is incapable of distinguishing signals in its passband
from signals aliasing from around its sampling fre-
quency. Its passband spectrum therefore repeats

Figure 5. Aliasing in Sampled-Data Systems Figure 6.  Sampled-Data Spectrum 
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around integer multiples of the sampling fre-
quency. Take for instance the case of dc aliasing
shown in Figure 5a. A digital low-pass filter
would treat the signal at fs as a dc input and pass
it with no attenuation. Similarly, if the filter
would attenuate the lower-frequency signal in
Figure 5b by 10 dB, the higher-frequency signal
would receive the same 10 dB of attenuation. The
higher-frequency signals in both cases could be
selectively filtered only by analog anti-alias filter-
ing before the signal is sampled.

Sampling rates are usually set high enough that
analog anti-alias requirements become trivial (or
perhaps eliminated). Higher oversampling ratios
offer greater bandwidth to roll off between the
passband and sampling frequency. Noise in the
digital domain can be analyzed just as it is in the
analog domain. Limiting a system’s bandwidth
will reduce noise and improve dynamic range.

Digital Filtering

The most popular digital filtering technique is av-
eraging. A sequence of digital samples are simply
collected and averaged to produce an output. This
reduces noise by limiting the effective noise
bandwidth. Averaging yields a (sin x)/x (or sinc)
filter response as shown in Figure 7. The zeroes
of infinite rejection (at fs/N, 2fs/N, 3fs/N, etc.)
can be strategically placed by selecting fs and the
number of samples averaged, N, to average over
an integral number of periods of critical frequen-
cies (50 Hz, 60 Hz, etc.). Of course, this same
principle lies at the heart of integrating ADC’s,
but the averaging is done in analog form. In both
cases greater dynamic range (or resolution) can
be achieved by increasing integration time. The
trade-off is bandwidth.

FIR Filters

Averaging is an elementary example of FIR, or
Finite Impulse Response, digital filtering. Finite
Impulse Response indicates that the filter consid-
ers only a finite number of inputs to calculate

each output. The number of samples determines
the impulse response duration. For example, a fil-
ter which averages ten samples has an impulse
response duration of ten. Longer durations indi-
cate more information is considered for each
calculation, resulting in a more powerful filter re-
sponse.

A digital filter’s impulse response is what deter-
mines its filter function. It is basically a
weighting function applied to the sequence of
samples being considered. The averaging filter is
an elementary example of an FIR filter because it
uses equal weighting (weight = 1/N where N =
# samples). More sophisticated impulse responses
extract the information contained in the relation-
ship between samples. Averaging filters ignore
this information.

Figure 8 illustrates how an FIR filter actually im-
plements the impulse response. The two basic
operations are multiplication (indicated by ⊗)
and addition - or accumulation - (indicated by Σ).
Filter coefficients a0 to a3 represent the impulse
response. The three unit delay elements insure
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that each output is calculated using the current
input sample and the three previous samples. The
filter’s input, x(n), and output, y(n), are digital
words of any length. (For the CS5317,  x(n) is
1-bit and y(n) is 16-bits). Each digital output re-
quires one complete convolution. For the
4th-order filter shown in Figure 8, one convolu-
tion consists of four multiplications and the
accumulation of the four products.

FIR filters are often described in terms of taps.
This terminology hails back to analog transversal
filters, which were basically analog implementa-
tions of the filter in Figure 8. The analog delay
elements were termed taps. The number of taps
indicated the filter’s impulse duration. The longer
the duration, the more powerful the filter.

Decimation

Digital filters often operate with input sampling
rates well above the bandwidth of interest. This
serves to minimize analog anti-alias filtering re-
quirements. The filter’s output rate, however, is
generally dropped to a more manageable system
sampling rate. Any reduction in sampling rate is
termed decimation.

To illustrate the decimation process let’s return to
averaging. A filter which collects ten samples and
then averages them to produce one output deci-
mates by ten. That is, for an input rate of fs, the
output rate is fs/10. Alternatively, one could use a

"rolling average." For each input sample received,
an output would be calculated using that sample
and the nine previous samples. The sampling rate
would therefore remain at fs with no decimation. 

The 4th-order FIR filter in Figure 9 exhibits the
same filter response as that in Figure 8, but deci-
mates by a factor of four. In this case, only one
multiplication is performed per input cycle. With-
out any delay elements, the accumulator needs
four input cycles to complete one convolution.
Output samples are therefore produced at fs/4.
Decimation clearly relaxes computational com-
plexity.

Decimation does not affect overall signal-to-noise
or dynamic range. For this reason, one can deci-
mate the CS5317’s 20 kHz output (by selectively
reading a fraction of the available samples) with-
out affecting the converter’s noise. However, a
digital signal is normally not decimated if addi-
tional filtering is to be used to increase dynamic
range (and resolution). All noise energy in a sam-
pled signal lies between dc and one-half the
sampling rate. Lower sampling rates therefore ex-
hibit larger noise densities in the bandwidth of
interest for a given amount of noise energy due to
aliasing.

FIR Characteristics

The only source of inaccuracy in digital filters is
rounding errors due to finite word lengths in the
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computations. If properly designed, a digital filter
will not induce linearity, offset, or gain errors.

Aside from their simplicity, FIR filters’ most
popular characteristic is their ability to implement
perfectly linear phase filters. The effect of every
input sample on the output is always seen a fixed
number of cycles later. This processing delay
from input to output is termed the filter’s group
delay, and can be shown to equal one-half the
impulse response duration.

Unfortunately, FIR filters can only implement ze-
roes, no poles. Roll-off is therefore limited. Of
course, this limitation can be overcome by cas-
cading FIR filters to produce an extraordinarily
long impulse duration. (Fortunately stability is
not an issue with FIR filters). The trade-off,
though, is an extraordinarily long group delay.

IIR Filters

Infinite Impulse Response filters, on the other
hand, can implement zeroes and poles to achieve
high roll-off. Unlike FIR filters, which use pre-
vious inputs to calculate an output, IIR filters
also utilize historical output information to calcu-
late each new output. In this manner, IIR filters
can implement mathematical filter equations with
variables in the denominator (that is, poles).

The only drawback to IIR filters is their computa-
tional complexity. Since their computations use
historical information on their past outputs, each
output must be calculated. That is, unlike FIR fil-
ters an IIR filter cannot decimate to reduce
computational complexity. Therefore, IIR filters
generally operate with lower sampling rates.

The CS5317 Voice-band A/D Converter
Implementation

The CS5317 uses oversampling, decimation, and
FIR filtering to implement its digital filter. The
CS5317 samples its analog input at 2.5 MHz (for
a full-rated 5 MHz master clock). This high over-

sampling ratio of 500:1 (2.5 MHz sampling/5
kHz bandwidth) reduces external analog anti-alias
requirements.

The FIR filter decimates the sampling rate from
2.5 MHz to 20 kHz to reduce computational com-
plexity. The filter features an impulse response
duration of 384 x 2.5 MHz and a decimation ratio
of 128 (2.5 MHz:20 kHz). Since the filter does
not decimate by 384 as shown in Figure 9, multi-
ple convolutions must be in process concurrently.
To achieve this, the CS5317 uses three accumula-
tors working from a single 384-word coefficient
memory. The three convolutions are spaced to be-
gin and end 128 samples apart. Thus, a new
16-bit output sample becomes available every
128 input samples (for a decimation ratio of 128)
whereas each 16-bit output is calculated using
384 input samples (for an impulse response dura-
tion of 384).

The CS5501 dc Measurement A/D Converter
Implementation

The CS5501 uses oversampling, decimation, and
both FIR and IIR filtering to implement its 6-pole
Gaussian filter. The CS5501 samples its analog
input at 16kHz (for a full-rated 4.096 MHz mas-
ter clock). This high oversampling ratio of 1600:1
(16 kHz sampling/10 Hz bandwidth) reduces and
most often eliminates external analog anti-alias
requirements. 

The FIR filter is used to decimate the sampling
rate from 16 kHz to 4 kHz to reduce computa-
tional complexity in the subsequent IIR filter. The
FIR filter response is not especially critical. Its
only goal is to reject energy within ±10 Hz bands
around integer multiples of 4 kHz, the IIR filter’s
sampling rate.

The IIR filter is needed to implement the poles in
the 6th-order Gaussian filter and achieve high
roll-off of 120dB/decade. Its baseband filter char-
acteristics are shown in Figure 10. Note that the
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filter’s entire frequency response can be scaled by
adjusting the master clock. The converter’s sam-
pling rate simply scales accordingly. With its
cut-off frequency set at 10 Hz (4.096 MHz mas-
ter clock) for maximized settling, the CS5501
offers 55 dB rejection at 60Hz. With a 5 Hz cut-
off, though, 60 Hz rejection increases to greater
than 90 dB. Master clocks as low as 40.96 kHz
are acceptable, yielding cut-off frequencies as
low as 0.1 Hz.

The CS5335 Digital Audio A/D Converter
Implementation

The CS5335 uses a three stage digital filter archi-
tecture.  Each of the two modulators outputs a

6.144 MHz 1-bit stream into a comb filter stage.
The comb filter is a fifth order Sinc function
which decimates by 32.  The output of the comb
filter is then passed to two additional stages of
filtering.  The finite-impulse-response (FIR) stage
which follows the comb filter has 20 taps and
decimates by 2.  This stage  provides compensa-
tion for the gain error of the comb function.  The
final FIR stage has 127 taps and  also decimates
by 2.  The entire filter achieves passband ripple
of 0.002 dB from dc to 22 kHz, a transition band
from 0.4535 Fs to 0.5465 Fs , and stopband at-
tenuation of at least 85 dB.  The filter provides
antialiasing filtering at the word rate of 48 kHz,
attenuating all analog frequencies from 26.2 kHz
to 6.118 MHz. 
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